

COASTAL RISK ASSESSMENT ALONG THE EAST COAST OF SRI LANKA

Trincomalee and Batticaloa

January 2018

Deliverable Title	COASTAL RISK ASSESSMENT ALONG THE EAST COAST
	OF SRI LANKA
Contributors	Ali Dastgheib
	Ruben Jongejan
	S. A. Mehvar
	Roshanka Ranasinghe
Date	30/01/2018

Deliverable status version control

Version	Date	Authors	Approval
1.0	25/10/2017	Contributors	Roshanka Ranasinghe
2.0	30/10/2017	Contributors	Roshanka Ranasinghe
3.0	30/01/2018	Contributors	Roshanka Ranasinghe

Table of Contents

TABLE OF C	ONTENTS	1
EXECUTIVE	SUMMARY	3
Introduction		3
Objective		3
Methodolog	у	3
Products		4
1. INTRO	DUCTION	9
2. SITE DI	ESCRIPTIONS	11
2.1. Trine	comalee site description (mission date: 09 Nov 2015)	12
2.1.1.	Kuchchaveli - Irakkandi (17 km)	13
2.1.2.	Irrakkandi- Northern end of Nilaveli headland (8 km)	14
2.1.3. 2.1.4.	Southern end of Nilaveli headland - Uppuveli (6 km) Uppuveli - Dutch Bay (5km)	16 16
2.2. Batt	icaloa site description (mission date: 05 Jan 2016)	18
2.2.1. 2.2.2.	Batticaloa - Kalmunai (40km) Kalmunai - Karaitivu (4 km)	18 20
3. DATA (COLLECTION AND ANALYSES	23
3.1. Bead	h profiles and sediment size	23
3.2. Wav	e data	27
3.2.1.	Off-shore wave data	27
3.2.2.	Wave model	29
3.2.3.	Storm data analyses	34
3.3. Rela	tive Sea Level Rise	41
3.3.1.	Global mean sea level change (ΔSL _G)	41
3.3.2.	Regional (local) spatial variations in sea level change	41
3.3.3.	Regional spatial variations in Relative Sea Level Rise	43
3.3.4.	Regional variation in sea level due to meteo-oceanographic factors (ΔSLRM)	44
3.3.5.	Changes in the regional gravity field of the Earth (Δ SLRG)	44
3.3.0. 2.2.7	Periodal variations in sea level change at the east coast of Sri Lanka	45 45
5.3.7.	negional valiations in sea ievel change at the east coast of Sfi Lafika	45
4. PROBA	BILISTIC COASTAL RECESSION (PCR) SIMULATIONS	47
4.1. Intro	oduction	47
4.2. Ever	t Generation	48
4.2.1.	Sampling a single storm conditions (H,T,D,Dir)	48

4 4	.2.2.	Constructing a record of storms including seasonality Example of Generated events	48 49
1 2	From	ion model	E 1
4.3.	2.1		51
4	.3.1.	Application of the crosion model	51
4	.3.2.	Application of the erosion model	53
4	.3.3.	Definition of reference coast line (RCL)	54
4.4.	PCR	Simulations	54
4.5.	Res	ults and discussion	55
5.	RISK-II	NFORMED LAND-USE PLANNING (ECONOMICALLY OPTIMAL SETBACK LINES)	. 59
5.1.	The	risk of coastline recession	59
5.2.	Acce	eptable risk	60
5.3.	The	economically optimal setback line (EOSL)	60
5	.3.1.	Economic model	60
5	.3.2.	Economic constants	63
5	.3.3.	Results: the position of the EOSL and optimal damage probabilities	65
5	.3.4.	Sensitivity to variations in the economic constants	71
5.4.	Sum	mary and discussion	74
6.	ENVIR	ONMENTAL RISK	. 77
6.1.	Met	hodology and materials	77
6	.1.1.	Valuation of CES	77
6	.1.2.	Identifying potential impacts of coastal recession by 2100 on CES and quantifying associated	00
e	nvironm	entariosses	80
6.2.	Res	ults	82
6	.2.1.	Present value of CES	82
6	.2.2.	Changes in the value of CES due to coastal recession by 2100	86
7.	СОМР	ARISON OF EXISTING CCD SETBACK LINES WITH EOSL/RSL	. 91
8	ΔΓΚΝΟ		97
0.			
9.	REFER	ENCES	. 99
ANI	NEX 1. C	OASTLINE RECESSION MAPS	
ANI	NEX 2. E	CONOMICALLY OPTIMAL SETBACK LINE MAPS	
ANI	NEX 3. C	OASTAL RECESSION VALUES	

ANNEX 4. ECONOMICALLY OPTIMAL AND RETREAT SETBACK LINE 2075 POSITIONS

Executive Summary

Introduction

This report presents the methods adopted and results of the study "Coastal risk assessment along the east coast of Sri Lanka" focusing on Trincomalee and Batticaloa districts. The project was funded via the Asian Development Bank – UNESCO-IHE (now IHE Delft) knowledge partnership and was conducted in cooperation with the Coast Conservation Department (CCD) of Sri Lanka.

The East coast of Sri Lanka is vulnerable to many natural disasters such as cyclones, storms, chronic coastal recession, and also tsunamis (as evidenced by the December 2004 Tsunami). The majority of communities and developments along the East coast are located in Trincomalee, Batticaloa, and Amparai districts; all of which are densely populated within the coastal belt. Since the end of the civil conflict in 2009, due to the many natural resources of the coastal region, ample opportunities for economic development have emerged, particularly along the coast of these districts. CCD is responsible for sustainable management of coastal zones in Sri Lanka and requires insight into the risks and opportunities along this coastal belt to help in fulfilling their mandate while promoting sustainable economic development.

Objective

The main objective of this study is to provide state-of-the-art probabilistic estimates of coastline recession and environmental losses over a 100 year time scale and to determine economically optimal coastal setback lines along the coasts of Tricomalee and Batticaloa districts.

Methodology

The Probabilistic Coastline Recession (PCR) model developed by Ranasinghe et al. (2012) was exclusively used in this study. The PCR model is designed to be used in a probabilistic manner to calculate a large number of long, realistic, sequences of beach erosion and recovery, and to then statistically analyse these sequences. It takes into account joint probabilities between all basic erosion variates including; wave height, period and direction, event duration, and the gap between storm events. The PCR model requires statistical parameters representing the wave climate and mean water levels as model forcing and beach profiles as model initialisation data. These data were collated for this study from a combination of global data bases and in-situ measurements. For this study, the PCR model was adapted to accommodate the prevailing conditions along the East coast of Sri Lanka, and applied at a total of 85 cross-shore profiles over the period 2016 - 2116.

By producing a sufficiently large database of possible future coastal recession estimates, PCR model results enable statistical analyses, and thus provided exceedance probabilities of coastal recession at all modelled profiles along the coastline of Trincomalee and Batticaloa. Spatial maps of 1 % and 50 % exceedance probability coastline recession contours computed for Trincomalee and Batticaloa study areas are shown in Annex 1. The values of 1 % and 50 % exceedance probability coastline recession of the modelled cross-shore profiles are given in Table format in Annex 3.

Statistical analyses of coastal recession estimates obtained from the PCR model results were subsequently used to determine the position of the economically optimal coastal setback line along the coasts of Trincomalee and Batticaloa districts to directly feed into risk-informed land-

use planning. Essentially, an estimate of the optimal position of a setback line (or, the economically optimal balance between risk and reward) can be obtained from the would-be behaviour of rational, well-informed, profit-seeking individuals in a world without market imperfections. Such an economically optimal setback line (EOSL) serves as a solid reference for coastal zone managers/planners who have to make on-the-ground decisions on implementing effective setback lines.

A state-of-the-art economical modelling approach which makes use of the economical constants of future rates of return on investment, discount rates and risk preferences and their uncertainties as well the probabilities of damage to potential development due to coastal recession (provided by PCR model output) was applied to the study area. Results were used to develop an EOSL along the coastline of Trincomalee and Batticaloa districts. Note that, due to the high rates of return on investment in parts of Trincomalee district, there we have also introduced a Retreat Setback Line 2075 (RSL 2075), which indicates the position landward of which developments with an intended life span greater than 50 years (starting from 2025) may be allowed. Maps of EOSL and RSL2075 are presented in Annex 2 and associated EOSL/RSL2075 positions are given in Table format in Annex 4.

To estimate the environmental risk along the coast of Trincomalee district, a three step approach was used: (1) quantifying the value of coastal ecosystem services (CES) through applying accepted economic valuation techniques; (2) identifying the potential changes in ecosystem services by 2100 due to coastal recession; and (3) translating these changes to quantitative monetary values. Social, environmental, and economical data provided by CCD, on site interviews of residents and visitors, together with a worst-case recession scenario (total beach loss) fed into this analysis which is presented in Chapter 6.

Finally, at the request of CCD, a comparison between currently adopted setbacks (defined by CCD as reservation and restricted zones, adding up to a total setback) and those computed in this study was performed (Chapter 7). As per the different definitions adopted by CCD and in this study, the computed EOSL was compared with the landward edge of the CCD Reservation zone, while the RSL 2075 (only applicable in Trincomalee district) was compared with the CCD Total setback (i.e. reservation + restricted zone).

Products

The main products of this study are:

1. Spatial maps showing exceedance probability contours of coastline recession due to storms and sea-level rise for Trincomalee and Batticaloa districts (given in Annex 1). An example map (in the Kalmunai - Karaitivu area in Batticaloa district) is shown below in Figure E1 (left).

2. Maps showing the economically optimal setback line computed for Trincomalee and Batticaloa districts (given in Annex 2). An example map (in the Kalmunai - Karaitivu area in Batticaloa district) is shown below in Figure E1 (right).

3. Estimates of environmental losses that may be expected by 2100 in Trincomalee district (given in Section 6). A summary is given below in Table E1.

4. Quantitative comparison of the current CCD setbacks and the EOSLs/RSLs computed in this study (Tables E2 (Trincomalee) and E3 (Batticaloa). In these tables, locations where the computed EOSL/RSL lie seaward of the CCD Reservation/Total setback (i.e. locations where the

existing setbacks could be relaxed) are highlighted in dark green (high), light green (moderate) and blue (low) while locations where the computed EOSL/RSL lie landward of the CCD Reservation/Total setback (i.e. locations where it is advisable to implement setbacks that are more stringent than those currently adopted) are highlighted in red (high), orange (moderate) and yellow (low). Please see the colour key within the tables for the distance ranges associated with each different colour.

Figure E1. Example of computed 1% (red) and 50% (orange) exceedance probability coastal recession contours (left), and associated Economically optimal coastal setback line (right) in the Kalmunai-Karaitivu region in Batticaloa district.

Table E1. Summary of the estimated environmental losses, expressed as coastal ecosystem service losses, in Trincomalee district due to coastal recession.

Estimated loss in	Estimated loss in	Estimated annual loss
tourism value of	amenity value of	in fishery value of
coastal ecosystems	coastal ecosystems	coastal ecosystems of
of Trincomalee	of Trincomalee	Kinniya division
(million US\$)	(million US\$)	(milion US\$)
9.3 – 11.7	12 - 18	1.8 – 2.25

Table E2. Comparison between EOSL/RSL and CCD setbacks at Trincomalee. All distances measured from vegetation line (positive (negative) values indicate landward (seaward) distances from the vegetation line).

Profile	Lon.	Lat.	EOSL	RSL	Current CCD Setbacks				
			(m)	2075	Zo	Zone			m)
				(m)	From	То	RSV	RST	TS
T-1	81.090	8.842	45	57			20	30	50
T-2	81.093	8.833	54	61	Salnavaru Bridge	Kuchchaveli	20	30	50
T-3	81.097	8.825	34	45	(SLTDA Tourism		20	30	50
T-4	81.103	8.818	32	38	Zone)	Puduwakattu [8° 51' 33 40"N	20	30	50
T-5	81.107	8.810	54	59	[8°47'27.80"N,	81° 05' 6.10"E]	20	30	50
T-6	81.112	8.802	35	41	81°07°13.10°EJ		20	30	50
T-7	81.117	8.795	31	41			20	30	50
T-8	81.124	8.788	39	44			50	-	50
Т-9	81.129	8.781	27	32		Salnavaru Bridge	50	-	50
T-10	81.135	8.774	53	62	Irrakkandy Bridge	(SLTDA Tourism	50	-	50
T-11	81.149	8.762	63	71	(River Mouth) [8°43'55 40"N	Zone)	50	-	50
T-12	81.154	8.754	54	60	81°10'24.60"E]	[8°47'27.80"N,	50	-	50
T-13	81.159	8.747	48	54		δ1 U/ 13.1U [°] EJ	50	-	50
T-14	81.165	8.740	65	70			50	-	50
T-15	81.177	8.726	61	74			20	30	50
T-16	81.179	8.722	66	76			20	30	50
T-17	81.184	8.715	27	34			20	30	50
T-18	81.187	8.711	8	15			20	30	50
T-19	81.189	8.707	42	49			20	30	50
T-20	81.191	8.703	57	67			20	30	50
T-21	81.196	8.690	97	114			20	30	50
T-22	81.199	8.686	72	86			20	30	50
T-23	81.201	8.682	72	86			20	30	50
T-24	81.203	8.678	53	69			20	30	50
T-25	81.206	8.674	73	87			20	30	50
T-26	81.209	8.671	72	85	Gangei Bridge	Irrakkandy Bridge	20	30	50
T-27	81.212	8.667	108	118	[8°27'37.50"N,	(River Mouth) [8°43'55 40"N	20	30	50
T-28	81.223	8.639	61	75	81°13'44.10"E]	81°10'24.60"E]	20	30	50
T-29	81.219	8.609	79	94			20	30	50
T-30	81.221	8.604	88	98	Recommended of present	Recommended landward shift	20	30	50
T-31	81.223	8.599	18	31	High	> 25 m	20	30	50
T-32	81.225	8.594	41	56	Medium	10 m - 25 m	20	30	50
T-33	81.227	8.589	18	28	Low	0 m - 10 m	20	30	50
T-34	81.230	8.584	61	71	Recommended	d seaward shift	20	30	50
T-35	81.238	8.571	4	7	of present	RSV and TS	20	30	50
T-36	81.238	8.570	-17	-7	Medium	10 m - 25 m	20	30	50
T-37	81.239	8.568	23	55	Low	0 m - 10 m	20	30	50
T-38	81.239	8.567	-4	18			20	30	50
T-39	81.240	8.566	14	39			20	30	50

* RSV = Reservation; RST = Restriction; TS = Total Setback

Table E3. Comparison between EOSL and CCD setbacks at Batticaloa. All distances measured from vegetation line (positive (negative) values indicate landward (seaward) distances from the vegetation line).

Profile	Lon.	Lat.	EOSL	Current CCD Setbacks				
		(m)	(m)	Zo	one	Se	tback (m)
				From	То	RSV	RST	TS
B-1	81.713	7.730	68	Kallady Beach Park	Batticaloa Light House	45	80	125
B-2	81.714	7.726	9	(Sarawanaady Road)	(Paalmeenmadu)	45	80	125
B-3	81.716	7.722	-8	81°43'08.80"E]	81°41'07.50"E]	45	80	125
B-4	81.719	7.718	104	Kaththankudy Dean	Kallady Beach Park	35	60	95
B-5	81.722	7.714	24	Road (Al Tharika	(Sarawanaady Road)	35	60	95
B-6	81.725	7.710	68	[7°41'40.38"N,	[7°43'05.10"N,	35	60	95
B-7	81.730	7.702	48	81°44'5.40"E]	81°43'08.80"EJ	35	60	95
B-8	81.735	7.694	35			30	50	80
B-9	81.737	7.691	29			30	50	80
B-10	81.740	7.687	31			30	50	80
B-11	81.742	7.683	6			30	50	80
B-12	81.745	7.679	43			30	50	80
B-13	81.748	7.675	44			30	50	80
B-14	81.750	7.671	41			30	50	80
B-15	81.759	7.655	50			30	50	80
B-16	81.768	7.639	33			30	50	80
B-17	81.776	7.623	46		Kaththankudy Dean	30	50	80
B-18	81.784	7.606	68	Batticaloa - Ampara	Road (Al Tharika Mosque)	30	50	80
B-19	81.790	7.589	99	[7°27' 15.40"N.		30	50	80
B-20	81.793	7.580	28	81°49'09.72"E]	[/°41'40.38"N, 81°44'5 40"F]	30	50	80
B-21	81.795	7.572	34	Bocommondor	Landward shift	30	50	80
B-22	81.797	7.563	92	of present	RSV and TS	30	50	80
B-23	81.800	7.554	31	High	> 25 m	30	50	80
B-24	81.801	7.545	50	Medium	10 m - 25 m 0 m - 10 m	30	50	80
B-25	81.803	7.536	73			30	50	80
B-26	81.806	7.527	8	Recommende	seaward shift	30	50	80
B-27	81.809	7.500	80	High_	> 25 m	30	50	80
B-28	81.813	7.482	35	Medium	10 m - 25 m	30	50	80
B-29	81.817	7.464	34	Low	0 m - 10 m	30	50	80
B-30	81.819	7.456	70			30	50	80
B-31	81.820	7.451	150			25	40	65
B-32	81.821	7.447	117			25	40	65
B-33	81.822	7.442	120	Nindavur Wowal	Batticaloa - Amnara	25	40	65
B-34	81.823	7.438	27	Lagoon Mouth	Batticaloa - Ampara District Boundarv	25	40	65
B-35	81.824	7.434	69	(Theater Road)	[7°27' 15.40"N,	25	40	65
B-36	81.826	7.429	99	81°51'47.30"E]	81°49'09.72"E]	25	40	65
B-37	81.829	7.426	45			25	40	65
B-38	81.832	7.422	71			25	40	65
B-39	81.835	7.418	-5			25	40	65

Profile	Lon.	Lat.	EOSL	Current CCD Setbacks				
		(m)	(m)	Zone			tback (m)
				From	То	RSV	RST	TS
B-40	81.838	7.414	36			25	40	65
B-41	81.841	7.406	112			25	40	65
B-42	81.842	7.401	82			25	40	65
B-43	81.844	7.397	61			25	40	65
B-44	81.844	7.393	62			25	40	65
B-45	81.846	7.388	111			25	40	65
B-46	81.847	7.384	76			25	40	65

* RSV = Reservation; RST = Restriction; TS = Total Setback